first working erspan implementation

This commit is contained in:
2025-04-03 20:11:42 +02:00
parent 6baf639a9c
commit 87d74f0db9

207
main.c
View File

@@ -38,6 +38,19 @@ struct tzsp_tagged {
unsigned char type; // Tag type
};
// GRE Header Structure
struct gre_header {
uint16_t flags; // GRE flags
uint16_t protocol; // Protocol type (0x88BE for ERSPAN)
};
// ERSPAN Header Structure
// ERSPAN Type II Header Structure
struct erspan_header {
uint32_t ver_vlan_cos_en_t_session; // Ver (4 bits), VLAN (12 bits), COS (3 bits), En (1 bit), T (1 bit), Session ID (10 bits)
uint32_t reserved_index; // Reserved (12 bits), Index (20 bits)
};
// Add this structure for ARP header parsing
struct arp_header {
uint16_t htype; // Hardware type
@@ -51,12 +64,6 @@ struct arp_header {
uint8_t tpa[4]; // Target protocol address
};
// Function to check if the system is little-endian
int is_little_endian() {
volatile unsigned int i=0x01234567;
return (((unsigned char*)&i)[0] == 0x67);
}
void list_interfaces() {
pcap_if_t *alldevs;
char errbuf[PCAP_ERRBUF_SIZE];
@@ -145,6 +152,8 @@ int main(int argc, char *argv[]) {
int count_packets = 0; // Flag for counting packets
unsigned long long int packet_count = 0; // Counter for matching packets (64bit)
int use_erspan = 0; // Flag for ERSPAN encapsulation
// Socket variables
int sockfd;
struct addrinfo hints, *res;
@@ -185,6 +194,8 @@ int main(int argc, char *argv[]) {
} else if (strcmp(argv[i], "-c") == 0) {
count_packets = 1; // Enable packet counting
verbose = 0; // Disable verbose mode if -c is set
} else if (strcmp(argv[i], "-e") == 0) {
use_erspan = 1; // Enable ERSPAN encapsulation
}
}
@@ -239,12 +250,31 @@ int main(int argc, char *argv[]) {
return 1;
}
// Create UDP socket
sockfd = socket(res->ai_family, SOCK_DGRAM, 0);
if (sockfd == -1) {
perror("socket");
freeaddrinfo(res);
return 1;
if (use_erspan) {
// Create a raw socket for ERSPAN
sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_GRE);
if (sockfd == -1) {
perror("socket");
freeaddrinfo(res);
return 1;
}
// Set the IP_HDRINCL option to include the IP header in the packet
int optval = 1;
if (setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, &optval, sizeof(optval)) == -1) {
perror("setsockopt");
close(sockfd);
freeaddrinfo(res);
return 1;
}
} else {
// Create a UDP socket for TZSP
sockfd = socket(res->ai_family, SOCK_DGRAM, 0);
if (sockfd == -1) {
perror("socket");
freeaddrinfo(res);
return 1;
}
}
memset(&dest_addr, 0, sizeof(dest_addr));
@@ -314,6 +344,7 @@ int main(int argc, char *argv[]) {
struct ip6_hdr *ip6_header; // Declare ip6_header
int ip_protocol = 0;
struct timeval current_time, last_count;
static uint32_t sequence_number = 0; // Sequence number for ERSPAN packets
gettimeofday(&last_count, NULL);
printf("\n");
@@ -400,41 +431,131 @@ int main(int argc, char *argv[]) {
}
}
// Create TZSP Header
struct tzsp_header tzsp;
tzsp.version = 1; // TZSP Version 1
tzsp.type = 1; // Type 1 for packet
tzsp.encapsulated_protocol = htons(1); // Ethernet
// Encapsulation logic
if (use_erspan) {
// ERSPAN Encapsulation
struct ip ip_header;
struct gre_header gre;
struct erspan_header erspan;
// Set IP header fields
memset(&ip_header, 0, sizeof(ip_header));
ip_header.ip_hl = 5; // Header length (5 * 4 = 20 bytes)
ip_header.ip_v = 4; // IPv4
ip_header.ip_tos = 0; // Type of Service
ip_header.ip_len = htons(sizeof(ip_header) + sizeof(gre) + sizeof(sequence_number) + sizeof(erspan) + header.caplen);
ip_header.ip_id = htons(0); // Identification
ip_header.ip_off = 0; // Fragment offset
ip_header.ip_ttl = 64; // Time to live
ip_header.ip_p = IPPROTO_GRE; // Protocol (GRE)
ip_header.ip_src.s_addr = inet_addr("192.168.1.1"); // Replace with your source IP
ip_header.ip_dst.s_addr = ((struct sockaddr_in *)&dest_addr)->sin_addr.s_addr;
// Set GRE header fields
gre.flags = htons(0x1000); // GRE flags (S bit set for Sequence Number Present)
gre.protocol = htons(0x88BE); // ERSPAN protocol type
// Set ERSPAN header fields
uint32_t version = 1; // Version (4 bits)
uint32_t vlan = 100; // VLAN ID (12 bits)
uint32_t cos = 5; // Class of Service (3 bits)
uint32_t en = 0; // Trunk Encapsulation Type (2 bit)
uint32_t t = 1; // Truncated (1 bit)
uint32_t session_id = 42; // Session ID (10 bits)
// Create TZSP Tagged Field for End of Fields
struct tzsp_tagged end_tag;
end_tag.type = 1; // End of Fields
// Combine fields into the 32-bit ver_vlan_cos_en_t_session field
erspan.ver_vlan_cos_en_t_session =
((version & 0xF) << 28) | // Version (4 bits, shifted to bits 28-31)
((vlan & 0xFFF) << 16) | // VLAN ID (12 bits, shifted to bits 16-27)
((cos & 0x7) << 13) | // Class of Service (3 bits, shifted to bits 13-15)
((en & 0x3) << 11) | // Trunk Encapsulation Type (2 bit, bit 12)
((t & 0x1) << 10) | // Truncated (1 bit, bit 11)
(session_id & 0x3FF); // Session ID (10 bits, bits 0-9)
// Calculate total length
unsigned short total_length = header.caplen + TZSP_ENCAP_LEN + TZSP_TAGGED_LEN;
tzsp.length = htons(total_length);
// Convert to network byte order
erspan.ver_vlan_cos_en_t_session = htonl(erspan.ver_vlan_cos_en_t_session);
// Allocate memory for TZSP packet
unsigned char *tzsp_packet = (unsigned char *)malloc(total_length);
if (tzsp_packet == NULL) {
perror("malloc");
continue; // Skip this packet
// Set the reserved and index fields
uint32_t reserved = 0; // Reserved (12 bits)
uint32_t index = 12345; // Index (20 bits)
// Combine fields into the 32-bit reserved_index field
erspan.reserved_index =
((reserved & 0xFFF) << 20) | // Reserved (12 bits, bits 20-31)
(index & 0xFFFFF); // Index (20 bits, bits 0-19)
// Convert to network byte order
erspan.reserved_index = htonl(erspan.reserved_index);
// Calculate total length
unsigned short total_length = sizeof(ip_header) + sizeof(gre) + sizeof(sequence_number) + sizeof(erspan) + header.caplen;
// Allocate memory for ERSPAN packet
unsigned char *erspan_packet = (unsigned char *)malloc(total_length);
if (erspan_packet == NULL) {
perror("malloc");
continue; // Skip this packet
}
// Copy IP header, GRE header, sequence number, ERSPAN header, and packet data into the new buffer
unsigned char *ptr = erspan_packet;
memcpy(ptr, &ip_header, sizeof(ip_header));
ptr += sizeof(ip_header);
memcpy(ptr, &gre, sizeof(gre));
ptr += sizeof(gre);
uint32_t seq_num_network_order = htonl(sequence_number++);
memcpy(ptr, &seq_num_network_order, sizeof(sequence_number));
ptr += sizeof(sequence_number);
memcpy(ptr, &erspan, sizeof(erspan));
ptr += sizeof(erspan);
memcpy(ptr, packet, header.caplen);
// Send packet via raw socket
if (sendto(sockfd, erspan_packet, total_length, 0, (struct sockaddr *)&dest_addr, dest_addr_size) == -1) {
perror("sendto");
}
free(erspan_packet); // Free allocated memory
printf("Sent ERSPAN packet with sequence number: %u\n", sequence_number - 1);
} else {
// TZSP Encapsulation
// Create TZSP Header
struct tzsp_header tzsp;
tzsp.version = 1; // TZSP Version 1
tzsp.type = 1; // Type 1 for packet
tzsp.encapsulated_protocol = htons(1); // Ethernet
// Create TZSP Tagged Field for End of Fields
struct tzsp_tagged end_tag;
end_tag.type = 1; // End of Fields
// Calculate total length
unsigned short total_length = header.caplen + TZSP_ENCAP_LEN + TZSP_TAGGED_LEN;
tzsp.length = htons(total_length);
// Allocate memory for TZSP packet
unsigned char *tzsp_packet = (unsigned char *)malloc(total_length);
if (tzsp_packet == NULL) {
perror("malloc");
continue; // Skip this packet
}
// Copy TZSP header and tagged field and packet data into the new buffer
unsigned char *ptr = tzsp_packet;
memcpy(ptr, &tzsp, TZSP_ENCAP_LEN);
ptr += TZSP_ENCAP_LEN;
memcpy(ptr, &end_tag, TZSP_TAGGED_LEN);
ptr += TZSP_TAGGED_LEN;
memcpy(ptr, packet, header.caplen);
// Send packet via UDP with TZSP encapsulation
if (sendto(sockfd, tzsp_packet, total_length, 0, (struct sockaddr *)&dest_addr, dest_addr_size) == -1) {
perror("sendto");
}
free(tzsp_packet); // Free allocated memory
}
// Copy TZSP header and tagged field and packet data into the new buffer
unsigned char *ptr = tzsp_packet;
memcpy(ptr, &tzsp, TZSP_ENCAP_LEN);
ptr += TZSP_ENCAP_LEN;
memcpy(ptr, &end_tag, TZSP_TAGGED_LEN);
ptr += TZSP_TAGGED_LEN;
memcpy(ptr, packet, header.caplen);
// Send packet via UDP with TZSP encapsulation
if (sendto(sockfd, tzsp_packet, total_length, 0, (struct sockaddr *)&dest_addr, dest_addr_size) == -1) {
perror("sendto");
}
free(tzsp_packet); // Free allocated memory
}
pcap_freecode(&fp);